
Ned Bingham, Rajit Manohar. “Self-Timed Adaptive Digit-Serial Addition.” IEEE Transactions on Very Large Integrated
Systems.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Self-Timed Adaptive Digit-Serial Addition
Ned Bingham and Rajit Manohar

edward.bingham@yale.edu and rajit.manohar@yale.edu
Computer Systems Lab

Yale University
New Haven, CT

Abstract—Addition, a fundamental operator in modern
computational systems, has a multitude of highly optimized
implementations. In general purpose systems, the width has
grown to 128 bits, putting pressure on designers to use
sophisticated carry lookahead or tree adders to maintain
throughput while sacrificing area and energy. However, the
typical workload mostly exercises the lower 10 to 15 bits. This
leaves many devices on and unused during normal operation,
reducing the overall performance. We hypothesize that bit- or
digit-serial implementations for arbitrary-length streams
represent an opportunity to decrease the overall energy usage
while increasing the throughput/area efficiency of the system and
verify this hypothesis by constructing an asynchronous digit-
serial adder for comparison against its bit-parallel counterparts.

Keywords—addition, arithmetic, asynchronous, quasi-delay
insensitive, qdi, bundled-data, bd

I. INTRODUCTION

Arithmetic plays a central role in computation. Of all
assembly instructions executed in the SPEC2006 benchmarks,
47% are arithmetic operations, 26% are integer arithmetic, and
10% are integer adds. Yet, interest in this subject declined in
the late 1990's suggesting that further research has been
providing diminishing returns [10].

The majority of high performance processors since the
1970s have been bit-parallel architectures with ever increasing
bitwidths. While algorithmic requirements have been the
primary factor driving the datapath to 32 bits, large dynamic
memory requirements have recently pushed the datapath
towards 64 bits and beyond. [9]

This has encouraged significant research toward a varied
array of bit-parallel arithmetic circuitry [13]. The Ripple-Carry
Adder is simple and energy efficient but ultimately slow,
producing a result in a worst case linear time. The Manchester
Carry Chain improves upon this structure using pass transistor
logic along the carry chain [23]. Sacrificing area and energy
for latency and throughput [15][16], there is a large class of
carry-lookahead adders that produce a result in worst case
logarithmic time [18][19][20][21][22]. Finally, there are
hybrid adders that mix multiple strategies: tying four bit
Machester Carry Chains together using Carry Lookahead
techniques [25][26].

Recently, the power wall has limited device utilization and
enforced a strict ceiling on clock frequency [11]. This

combined with a surge of interest in highly parallel
applications and AI, as indicated by a distinct change in focus
between Spec2000 [7] and Spec2006 [8], has pushed
researchers and architects to focus on specialized parallel
cores, leading to a resurgence of interest in Coarse Grained
Reconfigurable Arrays (CGRA).

CGRAs are effectively Field Programmable Gate Arrays
(FPGA) with more complex computational blocks. They seek
to maximize parallel throughput by taking advantage of spatial
parallelism. The amount of spatial parallelism an architecture
can support is determined by the number of function blocks
that can fit within a given area budget. Therefore, architects
have been exploring bit-serial arithmetic as a means of
maximizing throughput per transistor. [34][38][36][37]

Since most CGRA architectures are clocked, they need the
output of a function block to have predictable timing to keep
the problem of mapping the design to the architecture
tractable. This means that everyone ultimately uses the same
topology for bit-serial arithmetic. For addition, an adder has its
carry out fed back to its carry in through a multiplexer and a
flip flop. Then, the multiplexer is given a control signal to
determine whether to reset the flop. [30][29][31][33][28]
Though one approach goes a little further to add overflow
detection [32], the control ultimately remains rigid and
system-wide, supporting only fixed-length operand streams.

While continually more energy has been put into resolving
wider arithmetic, Fig. 1 shows that the average bitwidth of the
algorithmic work has remained relatively constant at 12 bits
and the bitwidth of the memory management work remains
predictable at the full width of the memory bus, or 48 bits [5].
Because these architectures only support fixed-length streams,
they miss most of the energy and throughput benefits
attainable through serial arithmetic. While a fixed-length adder
is more suitable for the memory management work, a length-
adaptive architecture targeting the algorithmic work could
support arbitrarily long streams while achieving average
throughput and energy metrics similar to a 12-bit fixed-length
architecture When applied to the algorithmic work.

https://doi.org/10.1109/TVLSI.2019.2918441

Fig. 1. Distribution of integer arithmetic bitwidth usage in Spec2006.

We present control circuitry for length-adaptive addition
and stream compression in self contained modules with their
own control flow as inspired by BitSNAP, an adaptive bit-
serial asynchronous microprocessor [35]. While BitSNAP's
control and datapath were both implemented with Quasi
Delay-Insensitive (QDI) design, we integrated a Bundled Data
(BD) datapath with the QDI control. QDI's propensity toward
complex control patterns and BD's propensity toward efficient
datapath logic allow us to exploit the strengths of both
synchronous and asynchronous design.

Section 2 describes our general design methodology.
Section 3 describes length-adaptive addition. Section 4 and
Section 5 describe full stream and single digit compression
respectively. In Section 6, we show that our implementation is
superior on average for both energy per operation and
throughput per transistor to parallel ripple and lookahead
adders. We also show that the benefits of length-adaptivity far
outweigh its overhead and that the use of QDI design in the
control leads to the most efficient approach. Finally, the
Appendix gives an overview of the program and circuit
notation used in this paper.

II. INTEGRATED QDI/BD
QDI asynchronous circuits use additional circuitry that

acknowledges each signal transition, preventing others until
the resulting computation as been completed and the value is
no longer necessary. These extra acknowledgement
requirements make QDI circuits very robust to variable gate
delays and allow architects to be meticulous about energy
expenditure. However, they also introduce significant
overhead when communicating the control behavior to the
datapath and visa versa which is only exacerbated in wider
datapaths.

Asynchronous micropipelines are a common way to take
advantage of QDI's propensity towards complex control
behavior by bundling a latched datapath with a QDI control.
However, the QDI control tends to be very simple, the
datapath tends to be wide, and a strict separation is maintained
between the two. This paper explores a scenario in which
complex control behavior is highly dependent upon some of
the input data from a narrow datapath. In this scenario, it is
more performant to integrate that data into the QDI control.

Ultimately, tying a bundled datapath to a non-trivial QDI
control creates a few complexities. With a typical BD design,
there is only one request. This makes the request optimal for
the delay line and the clock signal to the latches in the
datapath. However, because our control will have to deal with

non-trivial QDI data encodings, there will be more than one
request rail. This makes it more expensive to place delay lines
and difficult to use as a clock signal.

There are three common topologies for designing
handshake circuits: Weak Conditioned Half Buffer (WCHB),
Pre-Charge Half Buffer (PCHB), and Pre-Charge Full Buffer
(PCFB) [12]. If the control processes are PCHB or PCFB
templates, then there is an internal cycle on which the delay
line can be placed. However, if they are WCHB templates,
then we are left with little choice but the request lines. If the
QDI control requires a result from the datapath, then the input
requests should be delayed until that result has been computed.
Otherwise, they should be delayed until all of the input data
has resolved and is ready to be latched. This means that
different request lines can have different delay depending upon
their dependencies with the datapath. Alternatively, extra logic
can be used to generate and use a validity signal from the
request lines. However, this strategy tends to require much
longer transistor stacks in the forward drivers of the receiving
process.

For clock signal generation and subsequent latches, the
acknowledgement makes a good alternative to the request
rails. While we lose the ability to count the necessary amplifier
toward the delay line, we still have a clean one-wire signal
with the right timing. Before any requests have been
acknowledged, the latches should be open and ready to receive
data. Upon acknowledgement, the latches should close so that
the input data may be reset alongside the input requests.

Then, there is the final problem of making the control and
the datapath interact. Any input signals from the QDI control
to the datapath must be set up and stay stable such that the
datapath has time to finish by the time the output enable is
lowered, closing the output latches. The easiest way to handle
this is with internal state in the control, setting its value on the
downgoing transition of the output channel the iteration
before.

Any output signals from the datapath to the control must
be covered by the delay lines on the input request and remain
independent from any signals communicated from the QDI
control. This is because a change in the value of the internal
state in the control could cause a change in the output signal
from the datapath and therefore an instability in the QDI
control. If there is a dependency, then the output signal from
the datapath needs to be latched by the same signals that latch
the internal state driving the input signals from the control.

Subsequently, we apply these ideas to design a new length-
adaptive adder architecture that significantly outperforms
existing designs in the literature.

III. ADAPTIVE ADDER

The fundamental algorithm for LSB first serial addition is
fairly simple. We assume that the two input streams are
aligned such that the first token in each stream represents the
same digit-place. Then, digits arrive on the input channels A
and B in the same order that the carry chain is propagated. So,
they are added with the carry from the previous iteration, ci ,
to produce the sum on the output channel S and a new carry
for the next iteration, co . The CHP below describes the
algorithm. ∗[code] is an infinite loop and [exp →
code ▯ exp → code] is an if statement. See the
Appendix for more details.

ci:=0;

∗[s := (A
d
 + B

d
 + ci) % pow(2, N);

 co := (A
d
 + B

d
 + ci) / pow(2, N);

 S!s;

 A?,B?;

 ci:=co;

]

However, a real implementation must support finite length
streams. So, we add an extra bit to each token called “cap”,
which is only true for the last token in the stream. To operate
on two streams of differing lengths, we'll sign extend the
shorter stream by skipping the acknowledgement of its cap
token, repeating it until the cap token of the longer stream.
Then, we acknowledge both and continue to the next
operation. Because streams can extend to an arbitrary length,
they can represent arbitrarily large numbers with a fixed
precision.

For addition, finite-length streams also introduce overflow
conditions. When both inputs are cap tokens, then two's
complement dictates that their values repeat. So the output
values must also repeat. However, if co ≠ ci , then the next
sum token will be different from the current one. Extending
the input streams by one more token on an overflow condition
guarantees that the co = ci on the next iteration and that
consecutive sum bits will all be the same. Then, we can reset
ci and complete the output stream by forwarding a cap
token.

∗[s := (A
d
 + B

d
 + ci) % pow(2, N);

 co := (A
d
 + B

d
 + ci) / pow(2, N);

 [!A
c
 ∨ !B

c
 → S!(s,0); co:=ci;

 [!A
c
 → A? ▯ else → skip],

 [!B
c
 → B? ▯ else → skip]

 ▯ A
c
 ∧ B

c
 ∧ co≠ci → S!(s,0); co:=ci

 ▯ A
c
 ∧ B

c
 ∧ co=ci → S!(s,1); ci:=0; A?,B?

]

]

Fig. 2. The architecture of the Adaptive Adder.

Our implementation will start with the sign extension
logic. This has four cases defined by the intersection of Ac
and Bc that need to be implemented. In the first case, neither
inputs are cap tokens. In the second only A and in the third
only B has a cap token. Finally both inputs have cap tokens in
the fourth case. Unfortunately, none of these cases line up in
the forward driver or acknowledgement logic. In the forward

drivers cases 0, 1, and 2 drive Sc0 and case 3 drives Sc1 . In
the acknowledgement logic, A is only acknowledged for cases
0, 2, and 3, and B for cases 0, 1, and 3. This means that a
typical QDI implementation of the control will likely be
incompatible with any other logic, forcing it to have its own
pipeline stage.

To avoid this problem, we can take advantage of the BD
circuitry. We start by using SR latches to store a static version
of the input request. These are placed before the delay lines on
the input request to give them time to stabilize before the QDI
circuitry starts to operate. Each production rule listed is the
logical expression for a pull-up expr → var↾ or pull-down
expr → var⇂ network in the circuit. Transistors in series
are represented by A ∧ B and in parallel by A ∨ B . PMOS
transistors are enabled when the gate voltage is low, signified
by ¬A . For example, the first production rule listed below
describes the pull-down network of the NOR gate driving
Ax1 . To help understand this notation, we've rendered the
production rules for this process in Fig. 3 as a transistor
diagram. See the Appendix for more details.
Ax

0
 ∨ A

c0
 → Ax

1
⇂

Ax
1
 ∨ A

c1
 → Ax

0
⇂

¬Ax
0
 ∧ ¬A

c0
 → Ax

1
↾

¬Ax
1
 ∧ ¬A

c1
 → Ax

0
↾

Bx
0
 ∨ B

c0
 → Bx

1
⇂

Bx
1
 ∨ B

c1
 → Bx

0
⇂

¬Bx
0
 ∧ ¬B

c0
 → Bx

1
↾

¬Bx
1
 ∧ ¬B

c1
 → Bx

0
↾

Then, we combine the input requests before the delay
lines. This reduces the number of delay lines we need by two
and has zero overhead with respect to the rest of the control.
After delaying AB , we are set up to implement whatever
control we want using AB as its input.

(A
c0
 ∧ (B

c0
 ∨ B

c1
) ∨ A

c1
 ∧ B

c0
) → AB

0
↾

A
c1
 ∧ B

c1
 → AB

1
↾

¬A
c0
 ∧ ¬B

c0
 → AB

0
⇂

¬A
c1
 ∧ ¬B

c1
 → AB

1
⇂

Then, we need the comparison logic for Ci and Co . To
reduce the overall gate area, we use a pass transistor XOR to
determine whether Ci and Co are different. Because this
XOR will be used in the QDI handshake, the output of this
XOR must remain high as Ci is transitioning between values
through its neutral state, (1,1) . This means that the usual
pass transistor XOR is not sufficient. However, we can use the
fact that Co remains stable through the QDI handshake and
both Ci and Co are one hot encodings.
passp(Co

d1
, Ci

d1
, D

d1
)

passn(Co
d1
, Ci

d0
, D

d1
)

passp(Co
d0
, Ci

d0
, D

d1
)

passn(Co
d0
, Ci

d1
, D

d1
)

D
d1
 → D

d0
⇂

¬D
d1
 → D

d0
↾

With the above setup, we can now implement the main
cycle starting with the forward drivers. Luckily, it can be
drastically simplified by a few key observations. First

regarding the acknowledgement signals Ae and Be , if AB is
not a cap, then a non-cap token is output on S, A is
acknowledged if it's not a cap, and B is acknowledged if it's
not a cap. However, if AB is a cap token, then there are two
conditions. The overflow condition when Co ≠ Ci also
outputs a non-cap token on the output. It acknowledges neither
A nor B , and luckily both A and B are cap tokens. So the
acknowledgement is automatically implemented by the same
logic that handles the case in which AB isn't a cap. The final
case in which Co = Ci outputs a cap token on S and so
must be handled as a separate set of logic anyways.

Second, on an overflow condition, both A and B are cap
tokens but Co ≠ Ci . This means that the inputs aren't
acknowledged, the next operation doesn't pass through the
delay lines, and the bundled-data timing assumption breaks.

However, because cap tokens must be all ones or all zeros,
we know that if Co is not equal to Ci , then the data on A
and B must be equal. If they weren't, then the resulting
addition would be all ones and the value on Ci would be
faithfully propagated to Co making them equal.

If A and B are all zeros, then Co is guaranteed to be 0
meaning Ci must be 1 . In this case, only the least significant
bit of the datapath changes. If A and B are all ones, then Co
is guaranteed to be 1 and Ci must be 0 . In this case no bits
are changed in the datapath. This means that the max delay
required by the datapath in this case is constant at one bit in
the carry chain, which is far less than the natural cycle time of
the control process. This allows us to implement extremely
simple forward driver and acknowledgement logic.
S
e
 ∧ (AB

d0
 ∨ AB

d1
 ∧ D

d1
) → S

d0
↾

S
e
 ∧ AB

d1
 ∧ D

d0
 → S

d1
↾

S
d0
 ∧ Ax

0
 ∨ S

d1
 → A

e
⇂

S
d0
 ∧ Bx

0
 ∨ S

d1
 → B

e
⇂

Third, if Co ≠ Ci , then setting Ci = Co won't cause
any transition on Co . The only time Co is dependent upon
the value of Ci is when all of the bits in the adder propagate
the carry. However, in that case Co is guaranteed to be equal
to Ci . This means that the value of Ci can be both an input
to the datapath and set by an output from the datapath without
any extra control circuitry.

¬Ci
d0
 ∨ ¬S

e
 ∧ ¬_S

d0
 ∧ ¬Co

d0
 → Ci

d1
↾

¬Ci
d1
 ∨ ¬S

e
 ∧ (¬_S

d1
 ∨ ¬_S

d0
 ∧ ¬Co

d1
) → Ci

d0
↾

Ci
d0
 ∧ (S

e
 ∨ _S

d0
 ∨ Co

d0
) → Ci

d1
⇂

Ci
d1
 ∧ (S

e
 ∨ _S

d1
 ∧ (_S

d0
 ∨ Co

d1
)) → Ci

d0
⇂

Fourth, on the reset phase we check to make sure the next
Ci has the correct value before resetting the forward drivers
and the acknowledgement. Luckily, the overflow case doesn't
acknowledge ABd1 , so resetting Sd0 only has to make sure
ABd0 is acknowledged and Ci = Co as evaluated by D .

¬S
e
 ∧ ¬AB

d0
 ∧ ¬D

d1
 → S

d0
⇂

¬S
e
 ∧ ¬AB

d1
 ∧ ¬Ci

d1
 → S

d1
⇂

(¬S
d0
 ∨ ¬Ax

0
) ∧ ¬S

d1
 → A

e
↾

(¬S
d0
 ∨ ¬Bx

0
) ∧ ¬S

d1
 → B

e
↾

Fig. 3. Transistor diagram of LSB adder control circuitry.

For the datapath shown in Fig. 2, we latch the input data
for A and B and clock the latches using Ae and Be
respectively. This along with the Ci is fed into a Manchester
Carry Chain which drives the output data, Sd , and the carry-
out, Co .

IV. COMPRESS FULL

Suppose that our bundled-data adder has a datapath width
of N=4 bits. The resulting sum of 127, with an encoding of
0000 0111 1111 , and -128, with an encoding of 1111
1000 0000 , is -1, encoded with three tokens 1111 1111
1111 . However, encoding -1 requires only one.

So we compress the stream encoding by storing up each
carry chain until we know if it contains the cap token. If yes,
we only forward the cap. If no, we forward the whole carry
chain and start again. However, a token may only be dropped
if it is equal to the cap, meaning it must be all ones or all
zeros. Tokens that aren't can bypass this carry chain logic.

The implementation requires two internal variables: v
represents the value of the bits in the carry chain using one bit,
and n counts the number of tokens in the carry chain that are
currently held. For clarity, the ext() function implements
sign-extension, the msb() function selects the most
significant bit in the token, and the chain() function
returns true if a token is all ones or all zeros.
v := 0, n := 0;

∗[∗[L
d
≠ext(v) ∧ n>0 → R!(ext(v),0); n := n-1];

 v := msb(L
d
);

 [!chain(L
d
) → R!(L

d
,0)

 ▯ chain(L
d
) ∧ L

c
=0 → n := n+1

 ▯ L
c
=1 → n := 0, R!(ext(v),1)

]; L?

]

Upon receiving a token, we first check if it's part of the
stored carry chain. If not, we know that carry chain doesn't
contain the cap token. So, we loop over n , draining the stored
carry chain to the output. Then, we start accumulating the next
chain. So we set v to the last bit in the input token and check
if the input token is all ones or all zeros. If neither, we forward
it, bypassing the carry chain logic. Otherwise, we increment
n . If the input token is part of the carry chain and is the cap
token, then we clear the counter and forward the cap token.

Flattening this behavior leaves us with four basic
conditions. Condition 1 implements the loop, decrementing

when the input is not part of the carry chain. Condition 2
implements the bypass case when the input isn't part of any
carry chain. Condition 3 implements the carry chain
accumulation case that consumes inputs and increments the
counter. Finally, condition 4 implements the cap condition in
which the counter is cleared and the cap token is forwarded.
v := 0, n := 0;

∗[[L
d
≠ext(v) ∧ n≠0 → n := n-1, R!(ext(v),0)

 ▯ !chain(L
d
) ∧ n=0 → v := msb(L

d
); R!(L

d
,0); L?

 ▯ L
c
=0 ∧ (L

d
=ext(v) ∨ n=0) →

 n := n+1, v := msb(L
d
); L?

 ▯ L
c
=1 ∧ L

d
=ext(v) → n := 0, R!(ext(v),1); L?

]]

This design exposes complex communication patterns
between the control and datapath. While the acknowledgement
requirements introduced by these patterns make a QDI-only
implementation inefficient, a bundled data design saves us
from most of these requirements. Ultimately, making
intelligent choices about what is implemented in the datapath
will make all the difference in creating a simple and efficient
design.

The n and its associated increment, decrement, and clear
actions are implemented efficiently by the idczn counter
from [4]. This provides a counter-flow interface that maps
well to the control's behavior.

We copy the MSB of Ld into v in every condition that L
is acknowledged except for the last. However, in the last
condition when the input is a cap token, the next value of v
doesn't matter because the associated clear guarantees that n
is 0 . So our implementation can set v every time we
acknowledge L . This allows us to implement v as a flip-flop
in the datapath, making it accessable to the comparison
operation between Ld and ext(v) , and its assignment to
the MSB of Ld .

Fig. 4. The architecture of the integrated QDI/BD Stream Full Compression
unit.

The timing assumptions introduced by the bundled data
design flow pose new challenges in the design of the
compression unit. In particular, the condition that doesn't
acknowledge L skips the delay lines and forces us to consider
other methods of implementing the timing assumption. In the
case of the bundled data adder, this just meant taking a hard
look at the set of resulting timings to prove to ourselves the
delay line was unnecessary in the first place.

For the control, we'll start by implementing the four
forward driving cases. The logic for these drivers uses three
input data. Cz and Cn implement a one of two encoding that
signals whether the counter is zero or not. Lc0 and Lc1
implement a one of two encoding with the input request
specifying whether this token is a cap token, and D is a one of
three encoding. Dd0 signals that Ld=ext(v) , Dd1 signals
Ld=ext(¬v) , and Dd2 signals !chain(Ld) . D comes
from the datapath and is assumed to be stable by the time we
receive a request on Lc0 or Lc1 .

The output signals are named by their interaction with the
counter. Cd decrements the counter, Cs has no action, Ci
increments the counter, and Cc clears it. Rc0 is calculated
from the internal nodes of the c-element driving Cd and Cs ,
and Rc1 lines up perfectly with Cc . Finally, all of the output
requests except Cd acknowledge the input.

R
e
 ∧ C

n
 ∧ (D

d1
 ∨ D

d2
) ∧ (L

c0
 ∨ L

c1
) → C

d
↾

R
e
 ∧ C

z
 ∧ D

d2
 ∧ L

c0
 → Cs↾

 (C
z
 ∧ (D

d0
 ∨ D

d1
) ∨ C

n
 ∧ D

d0
) ∧ L

c0
 → C

i
↾

R
e
 ∧ (C

z
 ∧ (D

d0
 ∨ D

d1
) ∨ C

n
 ∧ D

d0
) ∧ L

c1
 → C

c
↾

¬_C
d
 ∨ ¬_Cs → R

c0
↾

R
c1
 = C

c

C
i
 ∨ C

c
 ∨ Cs → L

e
⇂

This yields a fairly clean WCHB implementation, and the
reset behavior is as expected.

¬R
e
 ∧ ¬C

n
 → C

d
⇂

¬R
e
 ∧ ¬L

d0
 → Cs⇂

 ¬C
z
 ∧ ¬C

n
 ∧ ¬L

d0
 → C

i
⇂

¬R
e
 ∧ ¬C

z
 ∧ ¬C

n
 ∧ ¬L

d1
 → C

c
⇂

_C
d
 ∧ _Cs → R

c0
⇂

¬C
i
 ∧ ¬C

c
 ∧ ¬Cs → L

e
↾

Meanwhile, the datapath shown in Fig. 4 is somewhat
more complex. We use pass transistor logic to reduce its
energy requirements and increase its maximum switching
frequency. We use a variant of the manchester carry chain to
check the conditions that are finally fed into the control block
as D . This yields an implementation with high frequency at
low energy and area requirements.

To start, each bit neads to pick between sending Ld or
ext(v) on R in order to implement the bypassing case with
Cs . We do this with pass transistor multiplexers. When Zd1
is high, it passes the value from Ld to Rd . When Zd0 is high,
it passes the value from V to Rd . Z is one when the counter

is zero and comes from latching Cn and Cz using the input
acknowledge.
passn(Z

d1
, L

d0
, R

d0
)

passp(Z
d0
, L

d0
, R

d0
)

passn(Z
d0
, V

d0
, R

d0
)

passp(Z
d1
, V

d0
, R

d0
)

passn(Z
d1
, L

d1
, R

d1
)

passp(Z
d0
, L

d1
, R

d1
)

passn(Z
d0
, V

d1
, R

d1
)

passp(Z
d1
, V

d1
, R

d1
)

Next, we implement the equality checks Dd0 representing
Ld=ext(¬v) , Dd1 representing Ld=ext(v) , and Dd2
representing !chain(Ld) . To do this, each bit will have two
Ci signals and two Co signals. Cod0 should be low if this
and all previous bits are 0 , and Cod1 if they are 1 . This
effectively forms two parallel carry chains.

passn(L
d0
, Ci

d0
, Co

d0
)

passp(L
d1
, Ci

d0
, Co

d0
)

passn(L
d1
, Ci

d1
, Co

d1
)

passp(L
d0
, Ci

d1
, Co

d1
)

¬L
d0
 → Co

d0
↾

¬L
d1
 → Co

d1
↾

Finally in the MSB, we compare these two carry signals
against the carry chain token value stored in V to implement
the equality checks.
(Co

d0
 ∨ V

d1
) ∧ (Co

d1
 ∨ V

d0
) → D

d0
⇂

(Co
d0
 ∨ V

d0
) ∧ (Co

d1
 ∨ V

d1
) → D

d1
⇂

¬Co
d0
 ∧ ¬V

d1
 ∨ ¬Co

d1
 ∧ ¬V

d0
 → D

d0
↾

¬Co
d0
 ∧ ¬V

d0
 ∨ ¬Co

d1
 ∧ ¬V

d1
 → D

d1
↾

¬D
d0
 ∧ ¬D

d1
 → D

d2
↾

D
d0
 ∨ D

d1
 → D

d2
⇂

V. COMPRESS ONE
The full compression unit presented above has a few issues

when applied to certain problem spaces. First, the total number
of bits in the counter dictates the maximum length of any carry
chain before incorrect results are given. This means that it
doesn't ultimately support arbitrary precision arithmetic. This
also means that longer carry chains require logarithmically
more counter units making the design area hungry.

Second, it's possible that the carry chain is the full length
of the value but the cap token is not part of the carry chain.
This implementation would be forced to cut the throughput of
such numbers in half by waiting for the whole carry chain to
be consumed before emitting it again and moving on. This
means that the device can vary drastically between half and
full throughput.

Instead of storing and collapsing the whole carry chain, we
could impose a limit on the length of the chain and pass the
remaining carry chain once that limit is reached. Implementing
an arbitrary limit would require an idczfn counter and likely be
fairly expensive. However, implementing a limit of one token
simply requires a single bit register in the compression unit.
This way, we can spread these compression units throughout a

computational fabric and execute the compression over the
course of multiple operations.

A limit of one also lends itself to an implementation with a
guaranteed constant throughput because the stored value is
only important when the current input token is the cap. At
which point, the stored value is compared against the cap and
handled appropriately. Unfortunately, the transition between
two input streams complicates the necessary control because
there isn't a stored value.
v := 0, n := 0

∗[[L
c
=0 ∧ n=0 → n := 1, v := L

d
; L?

 ▯ L
c
=0 ∧ n=1 → R!(v,0); v := L

d
; L?

 ▯ L
c
=1 ∧ n=0 ∧ L

d
≠v → n := 1, v := L

d

 ▯ L
c
=1 ∧ n=1 ∧ L

d
≠v → R!(v,0); v := L

d

 ▯ L
c
=1 ∧ L

d
=v → R!(v,1); n := 0, v := L

d
; L?

]]

So we have to store two values. v records the previous
token's data, and n signals whether v is valid. Luckily, n is
also directly represented by the previous token's control
signifying cap/not cap. We know v isn't yet valid for any
token proceeding a cap token and is valid otherwise.

The first condition handles the first token in the stream. v
isn't valid yet, so we need to load the input data into v and set
n . The second condition handles the majority of the stream.
Lc=0 meaning we haven't reached the end of the stream and
n=1 meaning that we have already seen the first token. In this
case we should forward the previous token stored in v and
load the new input into v .

Then we need to handle the three stream completion cases.
In the first case, the cap token is also the first token of the
stream. This case only happens in the context of a stream
representing 0 or -1 . To simplify the circuitry for the output
request on R , we load the input into v and leave the input
unacknowledged. This will transition directly into our last
case. In the second case, our stored token is a different value
from the cap token. This means that we cannot compress the
stream. So we forward v and store the new input. Again, we
don't acknowledge the input, transitioning us into our last case.
In our last case, the cap token on the input and the stored value
in v are the same, meaning that we can compress the stream.
So, we forward the value in v as a cap token and
acknowledge the input. This completes the stream and resets
n to 0.

Fig. 5. The architecture of the integrated QDI/BD Stream Compress One unit.

Throughout this specification, we've maintained a few
constants in an attempt to optimize the circuitry. First, the data
for the output request on R always comes from v . This
removes any muxing from the datapath and redirects that
complexity into the control. Second, the value stored in v is
always set using the data on the input channel L . These two
factors allow us to implement the datapath as a set of flops that
shift the data backwards in the stream by a single pipeline
stage. Third, the control circuitry is only dependent upon an
equality test from the datapath and the datapath is only
dependent upon clocking signals from the control. This allows
for a fairly strict separation between the two, simplifying the
control.

There are two primary challenges presented by this spec.
The first is that the clocking signal for the input latches on the
input request data Ld and the clocking signal for the extra set
of flops implementing v are different. v needs to be clocked
on every iteration of the control while the input request should
only be clocked on conditions 1, 2, and 5. The second
challenge is that conditions 3 and 4 bypass the delay line on
the input request control Lc , but still change the value of v
and therefore of the equality test between Ld and v . This
forces us to create a signal specifically for those two
conditions with its own delay line.

Our implementation starts with the five conditions that
drive the output request on R . Except for Ls , the signals
used to compute these conditions come directly from the spec.
Ls is the extra delay line signal for conditions 3 and 4, and
D signals whether Ld is different from v . Since conditions 3
and 4 can only transition to 4 or 5, only conditions 4 and 5
must check Ls .

R
e
 ∧ n0 ∧ L

d0
 → Rx

d0
↾

R
e
 ∧ n1 ∧ L

d0
 → Rx

d1
↾

R
e
 ∧ n0 ∧ D

d1
 ∧ L

d1
 → Rx

d2
↾

R
e
 ∧ Ls ∧ n1 ∧ D

d1
 ∧ L

d1
 → Rx

d3
↾

R
e
 ∧ Ls ∧ D

d0
 ∧ L

d1
 → Rx

d4
↾

Then, we use these conditions to drive the output request,
the input enable, and the extra delay signal. Because
conditions 1 and 3 only serve to load the input into the internal
memory, they don't forward any request on the output.
Furthermore, conditions 3 and 4 redirect the control to
condition 5 and therefore don't acknowledge the input request.
¬_Rx

d1
 ∨ ¬_Rx

d3
 → R

d0
↾

R
d1
 = Rx

d4

Rx
d0
 ∨ Rx

d1
 ∨ Rx

d4
 → L

e
⇂

Rx
d2
 ∨ Rx

d3
 → Ls⇂

Because the value of the input control token is reflected in
the output request rails, we can use them to set the internal
memory unit for n . Conditions 1 and 3 set n to 1 while
condition 5 sets it to 0 . The value of n for conditions 2 and 4
is already set correctly. We then use the output request reset to
acknowledge the transitions on the internal memory and reset
the input acknowledges. The delay line for Ls is placed
between the driver and all proceeding usages.

(¬n0 ∨ ¬L
d0
 ∧ ¬_Rx

d0
 ∨ ¬Ls ∧ ¬_Rx

d2
) → n1↾

 n0 ∧ (L
d0
 ∨ _Rx

d0
) ∧ (Ls ∨ _Rx

d2
) → n1⇂

 ¬n1 ∨ ¬R
e
 ∧ ¬_Rx

d4
 → n0↾

 n1 ∧ (R
e
 ∨ _Rx

d4
) → n0⇂

 ¬L
d0
 ∧ ¬n0 → Rx

d0
⇂

¬R
e
 ∧ ¬L

d0
 → Rx

d1
⇂

 ¬Ls ∧ ¬n0 → Rx
d2
⇂

¬R
e
 ∧ ¬Ls → Rx

d3
⇂

¬R
e
 ∧ ¬L

d1
 ∧ ¬n1 → Rx

d4
⇂

_Rx
d1
 ∧ _Rx

d3
 → R

d0
⇂

¬Rx
d0
 ∧ ¬Rx

d1
 ∧ ¬Rx

d4
 → L

e
↾

¬Rx
d2
 ∧ ¬Rx

d3
 → Ls↾

To implement the datapath in Fig. 5, the first thing we have
to do is generate the clocking signal for v using Le and Ls .
Meanwhile, the clock signal for the input data is just Le .

Ls ∧ L
e
 → vclk↾

¬Ls ∨ ¬L
e
 → vclk⇂

Then, we need to implement the equality check between
Ld and v for each bit.

L
d0
 ∧ R

d1
 ∨ L

d1
 ∧ R

d0
 → C

d0
⇂

¬L
d0
 ∧ ¬R

d0
 ∨ ¬L

d1
 ∧ ¬R

d1
 → C

d0
↾

C
d0
 → C

d1
⇂

¬C
d0
 → C

d1
↾

We take inspiration from a Manchester Carry Chain to
propagate this equality check across the bits using pass
transistors.

passn(C
d0
, Di, Do)

passp(C
d1
, Di, Do)

¬C
d0
 → Do↾

And finally, we generate the one hot encoding D for the
equality check used in the control.

D
d1
 = Do

Do → D
d0
⇂

¬Do → D
d0
↾

VI. EVALUATION

Aside from the Integrated Adaptive adder found in this
paper , we developed other serial adders for comparison
including a clocked non-adaptive digit-serial adder , a
clocked adaptive digit-serial adder synthesized by Synopsys
Design Compiler , a BD adaptive serial adder , and a
QDI adaptive serial adder . Furthermore, we built a set of
parallel adders including clocked Kogge & Stone[20] , Han
& Carlson[22] , and Brent & Kung[21] carry lookahead
adders, a clocked Manchester Carry Chain[23] , and a QDI
ripple carry adder[24] .

We used a set of in-house tools to develop and evaluate all
of these circuits. We verify the production rule specifications
with a switch-level simulation which identifies instability,
interference, and deadlock. We then automatically translate
these specifications into netlists and verify their analog
properties using Synopsys's combined simulator with VCS, a
verilog simulator, to simulate the testbench and HSIM, a fast
spice simulator, to report power and performance metrics. We
simulated the CHP using C++ to generate inject and expect
values which we tied into both the switch level and analog
simulations using Python. This allowed us to verify circuit and
behavioral correctness by checking the behavioral, digital, and
analog simulations against each other.

We used Intel PIN to analyze the Spec2006 integer
bitwidth distribution presented in Fig. 1. Ultimately, it is
measured across 2 trillion integer add instructions executed by
the 29 applications listed below selected by the Spec
Benchmark Committee to be a measure of a realistic workload
[7][8]. (perlbench, bwaves, milc, cactusADM, gobmk, povray,
sjeng, h264ref, omnetpp, sphinx3, bzip2, gamess, zeusmp,
leslie3d, dealII, calculix, GemsFDTD, tonto, astar, xalancbmk,
gcc, mcf, gromacs, namd, soplex, hmmer, libquantum, lbm,
wrf) The bitwidths are measured from the max of all of the
inputs for each add instruction. Video compression from
h264ref and audio processing from sphinx3 each exhibited
better bitwidth distributions than the one shown in Fig. 1 with
an average bitwidth of 6.7 and 10.9 bits respectively, not
including the spike for memory address calculations. (8.7 and
11.5 bits including the spike)

To evaluate the energy per operation and throughput of
these circuits, we used a 1V 28nm process to simulate uniform
random inputs for the serial adders and 1, 4, 8, 16, 32, and 64
bit versions of the parallel adders. We then compare their
performance in the context of Spec2006's integer bitwidth
distribution as shown in Fig. 1 ignoring the spike at 48 bits
since memory address calculations should be done by a bit-
parallel datapath. To get more accurate results, we protected
each of the digitally driven channels with a FIFO of three
WCHB buffers, and the clock signal with 6 six inverters, all
isolated to a separate testbench power source. We hand-sized
all of the adders to optimize delay. However, this mostly came
out to minimal gate sizing with a pn-ratio of 2. We count the
transistors in each design from the generated spice file and
also computed the sum of all the gate areas for each design as
estimates for layout area. While we found the transistor count

metric more approachable, the trends remain the same across
both metrics. In all of our implementations, we avoid using the
Half Cycle Timing Assumption (HCTA) [17] when possible
and use weak feedback for C-elements. Circuitry necessary for
reset was not included in any the above descriptions.

Fig. 6 shows the average addition throughput per transistor
versus the energy per add of each adder. For a 4-bit datapath,
our serial adder requires 314 transistors with a total gate area
of 2.395 um2. This is fewer than the 330 transistors with a
total gate area of 2.479 um2 necessary for the clocked non-
adaptive serial adder because our design is only half-buffered,
latching each input with 14 transistors each instead of using
standard master-slave D flip-flops with 28 each. This reduces
the latching overhead from 252 transistors to 112. And while
our design operates at half the frequency using slightly more
energy per token, this overhead allows our adder to skip a
majority of the tokens whereas the non-adaptive design
cannot. This translates to a 1.9 times increase in throughput
from 279 MHz to an average of 530.3 MHz, and a 46.5%
decrease in energy from 833 fJ to an average of 445 fJ.

Fig. 6. Performance and energy averaged over the distribution in Fig. 1 vs
Transistor Count.

Fig. 7. Performance and energy averaged over the distribution in Fig. 1 vs
Area.

The most competitive 64 bit parallel adder, the Han &
Carlson, has 6552 transistors with a total gate area of 41.92
um2. Its operation throughput is 7.31 times ours at 3.878 GHz.
However, if we were to devote the same transistor count to
multiple instances of our adder, they would have an average of
11 GHz, using 50% less energy per operation.

The synchronous adaptive adder synthesized by Synopsys
uses twice as many transistors at 616 and has 54% lower
operation throughput at 242 MHz. Furthermore, it uses 4.8
times the energy per operation. This difference is likely

 (1)
 (2)

 (3) (4)
 (5)

 (6)
 (7) (8)

 (9)
 (10) Each adder is labelled on graphs

by their associated number.

because the design is synthesized using a standard cell library
while the rest are full custom.

Adaptivity requires stateful control-flow either in the form
of a val-rdy interface or some asynchronous channel protocol.
The devices best geared to implement stateful control flow are
asymmetric c-elements. These don't really exist in any
standard-cell libraries because of the gross number of possible
cells. For this reason, good self-timed circuits often custom-
layout these cells for each design. Synthesizers don't have this
option though. Instead they cobble together stateful control
from latches, flops, and combinational logic which is
ultimately not a good fit.

In the datapath, our adder uses latches on the data while
the synthesizer used flops, dramatically increasing the
transistor count. Furthermore, our adder used a 4-bit
Manchester Carry Chain while the synthesized implementation
uses full-adder cells from the standard-cell library, ultimately
implementing a normal Ripple Carry Adder. This means that
while our adder can operate at 1.85 GHz, the synthesized
adder is limited to 1 GHz.

All of these differences are fairly typical in synthesized vs
full-custom and the synthesis could be tuned to produce a
better result. In recognition of this we also set out to design a
full custom latched synchronous adaptive adder. In the end, it
required a val-rdy interface because the input streams are
variable-length. The circuitry required to implement a val-rdy
interface is ultimately near-identical to the circuitry required to
implement a bundled-data interface. The only difference is that
for the val-rdy interface, the control signals are clocked
instead of delayed with a delay line. So, this design ended up
being the BD Adaptive Add . Ultimately, the architecture is
very similar to our integrated design. At 358 transistors, it
burns only 1.5 times the energy per operation with only 4.5%
lower operation throughput.

The only adaptive self-timed adder in the literature is from
Bitsnap [35]. We did not compare against this adder because
the implementation of its adaptivity was not self contained.
The design of the adder is ultimately a single bit from the
ripple-carry adder labelled (10) with its carry-out fed back into
the carry in through a FIFO. The implementation of the control
relied heavily upon the Bitsnap Microprocessor architecture as
a whole and was entirely inseparable. The QDI self-timed
adaptive adder labelled (5) that we developed is the self-
contained version of this. It is ultimately more expensive than
other approaches due to acknowledgement requirements
between the control and the datapath, implementing a 1 bit
datapath with 423 transistors, 44% lower operation
throughput, and burning 5.4 times as much energy per
operation.

Fig. 8 compares the throughput per transistor efficiency for
a single add against custom hardware for a given bitwidth. For
a single 32 bit or wider operation the Integrated Adaptive
adder has a similar throughput per transistor efficiency to a
custom bitwidth Brent & Kung carry lookahead adder. Below
32 bits, the dedicated custom bitwidth parallel adders have
significantly better throughput per transistor efficiency. This is
largely due to the requirement that the cap token be all ones or
all zeros.

Fig. 8. Each point on a curve corresponds the simulated throughput per
transistor for a single add of that specific bitwidth.

However, most computational systems don't have
hardware specifically dedicated to every bitwidth. Fig. 9
shows the performance of these adders on average for a given
maximum bitwidth using the bitwidth distribution from
Spec2006. At 26 bits, the Integrated Adaptive adder has the
same average throughput efficiency as the Kogge & Stone
adder. Once above 26 bits, the average throughput efficiency
of the Integrated Adaptive adder is significantly better than
any other architecture.

Fig. 9. Each point corresponds to the simulated throughput per transistor
averaged over the distribution in Fig. 1 for a given maximum bitwidth.

The story for the energy per operation metric is fairly
similar in Fig. 10. For a single operation, the custom width
parallel adders use about 40% less energy across the board.

Fig. 10. Each point on a curve corresponds to the simulated energy per add for
a single add of that specific bitwidth.

However, when we look at the average behavior for a
maximum bitwidth in Fig. 11, this lead only exists below 16

 (4)

bits. For widths of more than 16, the Integrated Adaptive
adder uses significantly less energy on average.

Fig. 11. Each point corresponds to the simulated energy per add averaged for
multiple adds over the distribution in Fig. 1 for a given maximum bitwidth.

The compression units are much more difficult to evaluate
overall. For the compress1 units, we know that they always
delay the stream by one token, but then retain full throughput
for the rest of the stream. The QDI compress1 unit with 166
transistors has the highest frequency and lowest energy per
token at 2.21 GHz and 37.7 fJ. However, it only has one bit
per token while the BD and integrated implementations have
4. The BD compress1 unit with 368 transistors has the lowest
frequency and highest energy per token at 1.43 GHz and 121.6
fJ. However, the integrated implementation with 433
transistors is once again the most performant, with a frequency
and energy of 2.20 GHz and 82.5 fJ per token.

For the full compression units, there are three modes. The
first mode passes tokens that aren't all ones or all zeroes and
therefore aren't part of any carry chain. The second mode
stores up a carry chain into the counter, and the third drains it
from the counter. Tokens in a carry chain must always go
through both the second and third modes meaning the overall
frequency is halved. For the QDI implementation, this
encompasses every token because tokens are only one bit and
therefore always all ones or all zeros. This means that the QDI
implementation has no passing mode. The wider the pipeline,
the more likely the token will have at least one bit that is
different making the token passable. This means that the BD
and integrated implementations ultimately won't encounter
modes 2 and 3 very often. However, we do have to measure
the cycle frequency of the unit instead of the input or output
frequency.

Not including the counter, the QDI compressN unit has
166 transistors, a frequency of 2.6 GHz and energy of 43 fJ
per token. The BD compressN unit has 368 transistors,
operating at 1.7 GHz and using 101.6 fJ per token. The
integrated compressN strikes the best of both with 334
transistors operating at 2.0 GHz and using 75 fJ per token.

With respect to the adder, this is a fairly large overhead.
However, these units ultimately should not be used very often.
In general it is more performant to just accept the overhead of
extra tokens instead of trying to compress them within the
execution logic. Streams should ultimately be compressed
only when they are being read from memory. With four bit
tokens, input streams will be an average of 3 tokens long.
While an overflow event or a bitwise operator can make every
token in a stream redundant, that ultimately means 3 tokens in
a redundant stream versus 1 token in a compressed one.

VII. CONCLUSION

The digit-serial adaptive adder presented in this paper has
significantly higher throughput for the same number of
transistors at a much lower energy cost than every other
industry standard and many other non-standard approaches.

Going forward, this adder represents only one of the many
operators required for a fully functional computational system.
We will explore other digit serial operators and their behavior
in larger contexts, modifying the control presented in this
paper to create a full featured LSB first digit-serial ALU. We
will also apply the lessons learned in this paper toward the
exploration of MSB first arithmetic, and its use in larger
contexts.

APPENDIX

A. CHP Notation
Communicating Hardware Processes (CHP) is a hardware

description language used to describe clockless circuits
derived from C.A.R. Hoare's Communicating Sequential
Processes (CSP) [1]. A full description of CHP and its
semantics can be found in [2]. Below is an informal
description of that notation listed top to bottom in descending
precedence.

Skip skip does nothing and continues to the next
command.
Dataless Assignment c↾ sets the voltage of the node c
to Vdd and c⇂ sets it to GND .
Assignment a := e waits until the expression, e, has a
valid value, then assigns that value to the variable, a .
Send X!e waits until the expression e has a valid value,
then sends that value across the channel X . X! is a
dataless send.
Receive X?a waits until there is a valid value on the
channel X , then assigns that value to the variable a . X?
is a dataless receive.
Probe X returns the value to be received from the channel
X without executing a receive.
Sequential Composition S; T executes the programs S
followed by T .
Parallel Composition S ∥ T executes the programs S
and T in any order.
Deterministic Selection [G1 → S1▯…▯Gn → Sn]

where Gi is a guard and Si is a program. A guard is a
dataless expression or an expression that is implicitly cast
to dataless. This waits until one of the guards, Gi ,
evaluates to Vdd , then executes the corresponding
program, Si . The guards must be mutually exclusive. The
notation [G] is shorthand for [G → skip] .
Repetition ∗[G1 → S1▯…▯Gn → Sn] is similar to the
selection statements. However, the action is repeated until
no guard evaluates to Vdd . ∗[S] is shorthand for
∗[true → S] .

B. PRS Notation
In a Production Rule Set (PRS), a Production Rule is a

compact way to specify a single pull-up or pull-down network
in a circuit. An alias a = b aliases two names to one circuit
node. A rule G → A represents a guarded action where G is
a guard (as described above) and A is a dataless assignment as
described above. A gate is made up of multiple rules that
describe the up and down assignments. The guard of each rule

in a gate represents a part of the pull-up or pull-down network
of that gate depending upon the corresponding assignment. If
the rules of a gate do not cover all conditions, then the gate is
state-holding with a staticizer. For such a gate driving a node
X , the internal node before the staticizor is referenced as _X .
Finally, a pass transistor is specified with passn(gate,
source, drain) or passp(gate, source,

drain) .

REFERENCES

[1] Sir Charles Antony Richard Hoare. “Communicating Sequential
Processes”. Communications of the ACM, pages 666-677, 1978.

[2] Alain J. Martin. “Synthesis of Asynchronous VLSI Circuits”.
Computer Science Department at California Institute of Technology:
Caltech-CS-TR-93-28, 1991.

[3] Spars, Jens, and Steve Furber. “Principles Asynchronous Circuit
Design.” Kluwer Academic Publishers, 2002.

[4] Ned Bingham and Rajit Manohar. “QDI Constant Time Counters”.
IEEE Transactions on VLSI.

[5] Victor Goulart and Kazuaki Murakami. “Dynamic effective precision
matching computation.” Proc. of 11th Workshop on Synthesis and
System Integration of Mixed Information Technologies SASIMI,
Hiroshima. 2003.

[6] David Brooks, and Margaret Martonosi. “Dynamically exploiting
narrow width operands to improve processor power and performance.”
High-Performance Computer Architecture, 1999. Proceedings. Fifth
International Symposium On. IEEE, 1999.

[7] SPEC CPU Subcommittee. “SPEC CPU2000.” 2000.
[8] SPEC CPU Subcommittee. “SPEC CPU2006.” 2006.
[9] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. “Parallel

Computer Architecture: A Hardware/Software Approach.” Gulf
Professional Publishing, 1999, pg 15-16.

[10] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian
Veres, Matthew K. Gray, The Google Books Team, Joseph P. Pickett,
Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, Steven Pinker,
Martin A. Nowak, and Erez Lieberman Aiden. “Quantitative analysis
of culture using millions of digitized books.” Science. 2011.

[11] Andrew Danowitz, et al. “CPU DB: recording microprocessor
history.” Queue 10.4 (2012): 10.

[12] Alain J. Martin, et al. “The Design of an Asynchronous MIPS R3000
Microprocessor.” ARVLSI. Vol. 97. 1997.

[13] Reto Zimmermann. “Computer Arithmetic: Principles, Architectures,
and VLSI Design.” Personal publication, (1999).

[14] Reto Zimmermann. “Binary Adder Architectures for Cell-Based VLSI
and their Synthesis.” Hartung-Gorre, 1998.

[15] Bojan Jovanović, and Milun Jevtić. “Optimization of the Binary Adder
Architectures Implemented in ASICs and FPGAs.” Soft Computing
Applications (2013): 295-308.

[16] D. J. Kinniment. “An Evaluation of Asynchronous Addition.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 4.1
(1996): 137-140.

[17] Christopher LaFrieda, and Rajit Manohar. “Reducing power
consumption with relaxed quasi delay-insensitive circuits.”
Asynchronous Circuits and Systems, 2009. ASYNC'09. 15th IEEE
Symposium on. IEEE, 2009.

[18] Harris, David. “A taxonomy of parallel prefix networks.” Signals,
Systems and Computers, 2004. Conference Record of the Thirty-
Seventh Asilomar Conference on. Vol. 2. IEEE, 2003.

[19] Gerald B. Rosenberger. “Simultaneous Carry Adder.” US Patent
2,966,305, December 27, 1957.

[20] Peter M. Kogge, Harold S. Stone. “A Parallel Algorithm for the
Efficient Solution of a General Class of Recurrence Equations.” IEEE
Transactions on Computers, 1973, C-22, 783-791

[21] Richard P. Brent and H. T. Kung. “A regular layout for parallel
adders.” IEEE transactions on Computers 3 (1982): 260-264.

[22] Tackdon Han, and David A. Carlson. “Fast area-efficient VLSI
adders.” Computer Arithmetic (ARITH), 1987 IEEE 8th Symposium
on. IEEE, 1987.

[23] T. Kilburn, D. B. G. Edwards, and D. Aspinall. “Parallel Addition in
Digital Computers: A New Fast 'Carry' Circuit.” Proceedings of the
IEE-Part B: Electronic and Communication Engineering 106.29
(1959): 464-466.

[24] Lines, Andrew Matthew. “Pipelined asynchronous circuits.” (1998).
[25] H. Ling. “High Speed Binary Adder.” IBM J. Reasearch. Dev., Vol.

25, No. 3, p.156, May, 1981.

[26] Samuel Naffziger. “A Sub-Nanosecond 0.5um 64b Adder Design.”
IEEE International Solid-State Circuits Conference 1996.

[27] Oklobdzija, V. G.; Zeydel, B. R. (2006). “Energy-Delay
Characteristics of CMOS Adders”. High-Performance Energy-
Efficient Microprocessor Design. Series on Integrated Circuits and
Systems. p. 147.

[28] Buric, Misha R., and Carver A. Mead. “Bit-Serial Inner Product
Processors in VLSI.” (1981): 155-164.

[29] Stewart G. Smith, and Peter B. Denyer. “Serial-Data Computation.”
Vol. 39. Springer Science & Business Media, 2012.

[30] Richard Hartley, and Keshab Parhi. “Digit-Serial Computation.” pp 6,
15, and 25, Springer Science & Business Media, 2012.

[31] Ercegovac, Miloš D., and Tomas Lang. “Digital Arithmetic.” Elsevier,
2004.

[32] Tsuyoshi Isshiki. “High-Performance Bit-Serial Datapath
Implementation for Large-Scale Configurable Systems.” Penn State
University, pp 33, April 1996.

[33] J. Povazanec and C. S. Choy and C. F. Chan “Asynchronous Logic in
Bit-Serial Arithmetic.” IEEE International Conference on Electronics,
Circuits and Systems, pp. 175-178, September 1998.

[34] Hillis, W. Daniel. “The Connection Machine: A Computer
Architecture Based on Cellular Automata.” Physica D: Nonlinear
Phenomena 10.1 (1984): 213-228.

[35] Virantha N. Ekanayake, Clinton Kelly, and Rajit Manohar. “Bitsnap:
Dynamic Significance Compression for a Low-energy Sensor Network
Asynchronous Processor.” Asynchronous Circuits and Systems, 2005.
ASYNC 2005. Proceedings. 11th IEEE International Symposium on.
IEEE, 2005.

[36] Jyh-Huei Guo, and Chin-Liang Wang. “A novel digit-serial systolic
array for modular multiplication.” Circuits and Systems, 1998.
ISCAS'98. Proceedings of the 1998 IEEE International Symposium
on. Vol. 2. IEEE, 1998.

[37] Amar Aggoun, Mohammad K. Ibrahim, and Ahmed Ashur. “Bit-level
pipelined digit-serial array processors.” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing 45.7 (1998):
857-868.

[38] Ramon Canal, Antonio González, and James E. Smith. “Very low
power pipelines using significance compression.” Proceedings of the
33rd annual ACM/IEEE international symposium on
Microarchitecture. ACM, 2000.

Ned Bingham is a PhD student at Yale. He received
his B.S. (2013) and M.S. (2017) from Cornell.
During his Masters, he designed a set of tools for
working with self-timed systems using a control-
flow specification called Handshaking Expansions.
Currently, he is researching self-timed systems as a
method of leveraging average workload
characteristics in general compute architectures.
Between his studies, he has worked at Intel on Pre-
Silicon Validation (2011, 2012), Qualcomm
researching arithmetic architecture (2014), and

Google researching self-timed systems (2016). In his spare time, he reads
about governmental systems and dabbles in building collaborative tools.
(www.nedbingham.com)

Rajit Manohar is the John C. Malone Professor of
Electrical Engineering and Professor of Computer
Science at Yale. He received his B.S. (1994), M.S.
(1995), and Ph.D. (1998) from Caltech. He has been
on the Yale faculty since 2017, where his group
conducts research on the design, analysis, and
implementation of self-timed systems. He is the
recipient of an NSF CAREER award, nine best paper
awards, nine teaching awards, and was named to
MIT technology review's top 35 young innovators
under 35 for contributions to low power

microprocessor design. His work includes the design and implementation of a
number of self-timed VLSI chips including the first high-performance
asynchronous microprocessor, the first microprocessor for sensor networks,
the first asynchronous dataflow FPGA, the first radiation hardened SRAM-
based FPGA, and the first deterministic large-scale neuromorphic architecture.
Prior to Yale, he was Professor of Electrical and Computer Engineering and a
Stephen H. Weiss Presidential Fellow at Cornell. He has served as the
Associate Dean for Research and Graduate studies at Cornell Engineering, the
Associate Dean for Academic Affairs at Cornell Tech, and the Associate Dean
for Research at Cornell Tech. He founded Achronix Semiconductor to
commercialize high-performance asynchronous FPGAs. (csl.yale.edu/~rajit)

https://doi.org/10.1145/359576.359585
http://resolver.caltech.edu/CaltechCSTR:1991.cs-tr-93-28
https://www.springer.com/us/book/9780792376132
https://nbingham.github.io/counter
https://www.researchgate.net/profile/Kazuaki_Murakami/publication/31902098_Dynamic_Effective_Precision_Matching_Computation/links/0fcfd513160a367f80000000.pdf
https://doi.org/10.1109/HPCA.1999.744314
https://www.spec.org/cpu2000/
https://www.spec.org/cpu2006/
https://dl.acm.org/citation.cfm?id=2821564
http://science.sciencemag.org/content/331/6014/176
https://doi.org/10.1145/2181796.2181798
https://doi.org/10.1109/ARVLSI.1997.634853
http://www.iis.ee.ethz.ch/~zimmi/publications/comp_arith_notes.ps.gz
https://pdfs.semanticscholar.org/67e7/3ba83141298dba2c4fa33c933ed7a1bdd3f9.pdf
https://link.springer.com/chapter/10.1007/978-3-642-33941-7_27
https://doi.org/10.1109/92.486088
https://doi.org/10.1109/ASYNC.2009.9
https://doi.org/10.1109/ACSSC.2003.1292373
https://www.google.com/patents/US2966305
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1109/TC.1982.1675982
https://doi.org/10.1109/ARITH.1987.6158699
https://doi.org/10.1049/pi-b-2.1959.0316
http://resolver.caltech.edu/CaltechCSTR:1998.cs-tr-95-21
https://doi.org/10.1147/rd.252.0156
https://doi.org/10.1109/ISSCC.1996.488718
https://doi.org/10.1007/978-0-387-34047-0_6
http://resolver.caltech.edu/CaltechCONF:20120508-140618414
http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.46.4860
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.4860&rep=rep1&type=pdf#page=39
https://doi.org/10.1109/ICECS.1998.813961
https://doi.org/10.1016/0167-2789(84)90263-X
https://doi.org/10.1109/ASYNC.2005.14
https://doi.org/10.1109/ISCAS.1998.706870
https://doi.org/10.1109/82.700933
https://doi.org/10.1109/ASYNC.2005.14
https://www.nedbingham.com/
http://csl.yale.edu/~rajit/

